
An inequality for characteristic functions and its applications to uncertainty relations and the

quantum Zeno effect

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 5935

(http://iopscience.iop.org/0305-4470/35/28/311)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/28
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 5935–5941 PII: S0305-4470(02)36294-2

An inequality for characteristic functions and its
applications to uncertainty relations and the quantum
Zeno effect

Shunlong Luo1, Zhen Wang2 and Qiang Zhang3

1 Institute of Applied Mathematics, Academy of Mathematics and System Sciences,
Chinese Academy of Sciences, Beijing, 100080, People’s Republic of China
2 Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071,
People’s Republic of China
3 Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

E-mail: luosl@amath4.amt.ac.cn

Received 26 April 2002, in final form 21 May 2002
Published 5 July 2002
Online at stacks.iop.org/JPhysA/35/5935

Abstract
An inequality concerning characteristic functions is established. It is useful
in studying zero neighbourhood behaviours of characteristic functions. The
physical implications for the time–energy uncertainty relations and the quantum
Zeno effect are indicated.
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Let F be a probability distribution function on R, that is, F is non-decreasing, left continuous,
F(−∞) = 0, F (∞) = 1. Let

�(t) :=
∫

e−itx dF(x)

be its characteristic function (Fourier transform). It is well known that if F has finite second
momentM2, then

|�(t)| � 1 − 1
2M2|t|2 ∀t ∈ R.

Motivated by several questions such as parameter-based time–energy uncertainty relations
and the quantum Zeno effect in quantum mechanics, we are led to consider the following
problem: for any 0 � β � 2, does there exist a positive constant α, depending only on β and
F, such that

|�(t)| � 1 − α|t|β ∀t ∈ R?

A solution of this problem will have interesting applications in both statistics and physics.
It has applications in estimating the first zero of characteristic functions, in studying the decay
rate of unstable systems, in quantifying the Heisenberg uncertainty principle [6, 8, 10, 11],
in providing a simple criterion for the occurrence of the quantum Zeno effect [1, 2, 7], etc.
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To the best of our knowledge, this question has not been addressed before. This paper presents
a solution of the above problem which is summarized in theorem 1. By virtue of this result,
we obtain a family of parameter-based time–energy uncertainty relations (corollary 1), and a
simple sufficient condition for the occurrence of the quantum Zeno effect (corollary 2).

Theorem 1. (i) For any 0 � β � 2, it holds that

|�(t)| � 1 − λβMβ |t|β ∀t ∈ R. (1)

Here

Mβ :=
∫

|x|β dF(x)

is the βth absolute moment of F and λβ is defined as

λβ := sup
x�0

1 − cos x

xβ

which satisfies λ0 = 2, λ2 = 1/2 and

1 − cos 1 � λβ � 21−β ∀β ∈ [0, 2]. (2)

(ii) For any fixed β > 2, if F is non-degenerate (that is, F is not concentrated on one
point), andMβ < ∞, then there does not exist any constant α > 0 (depends only on β and F)
such that

|�(t)| � 1 − α|t|β ∀t ∈ R. (3)

Proof. (i) If Mβ = ∞, the result is trivially true, thus we only need to prove inequality
(1) when Mβ < ∞. Since |�(t)| � Re�(t) (the real part of �(t)), it suffices to prove

1 − Re�(t) � λβMβ |t|β.
Since for 0 � β � 2, t > 0 (for t = 0, inequality (1) is trivially true since �(0) = 1)

1 − cos(tx)

|tx|β � sup
x�0

1 − cos(tx)

|tx|β = sup
x�0

1 − cos x

xβ
= λβ

by noting cos(−tx) = cos(tx), we have

1 − Re�(t) =
∫
(1 − cos(tx)) dF(x)

�
∫
λβ |tx|β dF(x)

= λβMβ |t|β.
We now prove λβ � 21−β . First note that if 0 � γ � 1, then

|sin x| � |x|γ ∀x ∈ R. (4)

In fact, when |x| � 1, we have |sin x| � 1 � |x|γ for any γ � 0; when |x| � 1, we have
|sin x| � |x| � |x|γ for any 0 � γ � 1. Consequently, when 0 � γ � 1, inequality (4)
always holds.

Now since 0 � β/2 � 1, by inequality (4), we have

1 − cos(tx) = 2 sin2(tx/2) � 2
(|tx/2|β/2)2 = 21−β |tx|β

and the inequality λβ � 21−β follows.
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Next, we prove that minβ∈[0,2] λβ = 1 − cos 1. Since λ0 = 2 and λ2 = 1
2 , we only need

to consider β ∈ (0, 2). Fixing such a β, and taking the partial derivative of the function

�β(x) := 1 − cos x

xβ
x � 0

with respect to x, we have (the case β = 1 is interpreted in a limiting sense)

∂�β(x)

∂x
= sin x · xβ − (1 − cos x)βxβ−1

x2β
= sin x

xβ+1
(x − β tan(x/2)).

A more detailed analysis shows that for fixed β ∈ (0, 2),�β(x) attains its maximum value
when x is the first positive root of the equation x − β tan(x/2) = 0. We denote this solution
as x(β) to emphasize its dependence on β. Therefore

λβ := sup
x�0

1 − cos x

xβ
= 1 − cos(x(β))

xβ(β)
= �β(x(β)).

Now taking the derivative of the above function with respect to β, and noting that
∂
∂x
�β(x)

∣∣
x=x(β) = 0, we obtain

∂λβ

∂β
=
(
∂�β(x)

∂x

∂x

∂β
+
∂�β(x)

∂β

) ∣∣∣
x=x(β)

= − ln x
1 − cos x

xβ

∣∣∣
x=x(β)

.

Therefore, whenever x(β) > 1, λβ as a function of β is decreasing, and whenever x(β) < 1,
λβ as a function of β is increasing. But the first positive solution x = x(β) of the equation
x − β tan(x/2) = 0 is a decreasing function of β. We have x(β) > 1 when β < 1/ tan(1/2),
and x(β) < 1 when β > 1/ tan(1/2). Consequently, when β = 1/ tan(1/2) (in this case
x(β) = 1), λβ takes its minimum value which is equal to

�β(x(β))|β=1/ tan(1/2) = 1 − cos 1 ≈ 0.4597.

(ii) If F is non-degenerate and Mβ < ∞ for some β > 2, then we have 0 < M2 < ∞.
By Taylor expansion,

�(t) = 1 − ibt − 1
2M2t

2 + o(t2) for small |t| ∈ R.

Here b := ∫
x dF(x) is the expectation of F. From this we obtain

|�(t)|2 = 1 − (M2 − b2)t2 + o(t2) for small |t| ∈ R.

Consequently,

|�(t)| = 1 − 1
2σ

2t2 + o(t2) for small |t| ∈ R.

Here σ 2 := M2 − b2 is the variance of F. But since F is non-degenerate, the variance σ 2 is
never zero. Now if inequality (3) also holds true, then by noting β > 2, we have

1 = lim
t→0

1 − |�(t)|
1 − |�(t)| � lim

t→0

α|t|β
σ 2t2/2 − o(t2)

= 0.

A contradiction! �

Remark.

(1) It is obvious that if β > 2, then

λβ := sup
x�0

1 − cos x

xβ
= ∞

since 1 − cos x = 1
2x

2 + o(x2) when x is near zero. The graph of λβ as a function of β is
plotted in figure 1.
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Figure 1. The solid curve is the graph of λβ = supx�0
1−cos x
xβ

and the dashed curve is the graph of

λβ = 21−β . The minimum ofλβ whenβ changes on [0, 2] occurs whenβ = 1/ tan(1/2) ≈ 1.8305,
and minβ∈[0,2] λβ = 1 − cos 1 ≈ 0.4597.

(2) Inequality (1) for β = 1 has been used to prove a variation of the Heisenberg uncertainty
relations involving an average [4].

Corollary 1. Let τ := inf{t � 0 : �(t) = 0} be the first zero of the characteristic function�.
If 0 � β � 2, then

τ � 1

(λβMβ)1/β
. (5)

Proof. Readily follows from inequality (1) and �(τ) = 0. �

Corollary 2. If there exists β > 1 such that Mβ < ∞, then for any fixed t ∈ R,

lim
n→∞ |�(t/n)|n = 1. (6)

Proof. Since� is the characteristic function of a probability distribution, we have |�(t)| � 1,
thus limn→∞ |�(t/n)|n � 1. On the other hand, from inequality (1), we have

lim
n→∞ |�(t/n)|n � lim

n→∞(1 − λβMβ |t/n|β)n

= lim
n→∞ exp {−λβMβ |t|βn1−β}

= 1. �

Remark. The condition that Mβ < ∞ is a sufficient, but not a necessary, condition for (6) to
hold. We conjecture that (6) holds true if and only if M1 < ∞.
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Now we discuss the physical interpretations of our results. Let H be a Hamiltonian and
|ψ〉 be a quantum state. We want to estimate the evolution speed of |ψ〉 under H by virtue of
moments. Let

τ = inf{t � 0 : 〈ψ|e−itH |ψ〉 = 0}
be the first time that |ψ〉 evolves into an orthogonal state (we put the Planck constant h̄ = 1).
Two fundamental results along this line are τ�H � π

2 , which gives an estimate of τ in terms
of the variance [5, 10, 11], and τ 〈H 〉 � π

2 (for non-negative H), which gives an estimate of
τ in terms of the average [6]. However, when the variance and the average of H are infinite,
these two results only give rise to the trivial estimation: τ � 0.

Let {|E〉} be the complete set of energy eigenstates: H |E〉 = E|E〉, 〈E′|E〉 = δ(E−E′).
Let |ψ〉 and |e−itHψ〉 be expanded in the energy eigenstates (that is, written as superpositions
of the complete set {|E〉}) as

|ψ〉 =
∫
λ(E)|E〉 dE

|e−itHψ〉 = e−itH
∫
λ(E)|E〉 dE

=
∫
λ(E) e−itE |E〉 dE.

Thus λ(E) = 〈E|ψ〉 is the wavefunction of the quantum state in the energy representation.
When the energy spectrum is discrete, the integrals should be interpreted as discrete sums.
Let A(t) := 〈ψ|e−itH |ψ〉 be the survival amplitude, then

A(t) = 〈ψ|e−itH |ψ〉 =
∫

|λ(E)|2 e−itE dE.

Consequently, the survival amplitude A(t) = 〈ψ|e−itH |ψ〉 is precisely the characteristic
function (Fourier transform) of the state energy distribution |λ(E)|2 = |〈E|ψ〉|2. Identifying
A(t) with�(t), |λ(x)|2 dx with dF(x), E with x and t with time in theorem 1 and corollary 1,
then τ is the first positive zero of � (physically the first time that the quantum state evolves
into an orthogonal state). Thus inequality (5) may be viewed as a general parameter-based
time–energy uncertainty relation: the evolution speed (here characterized by τ ) is controlled
by the energy spread (here characterized by Mβ). Furthermore, the limiting property (6) is
precisely the mathematical expression for the occurrence of the quantum Zeno effect, the
phenomenon that frequent observations (measurements) will slow down or even inhibit the
evolution of the decay of an unstable system [1, 2, 7]. Therefore, corollary 2 provides a simple
sufficient condition for the occurrence of the quantum Zeno effect: whenever there exists a
β > 1 such that Mβ < ∞, then limn→∞ |A(t/n)|2n = 1, consequently, the quantum Zeno
effect exhibits manifestation. This result improves a somewhat controversial issue concerning
the quantum Zeno effect [1, 2]: in the literature, one usually requires M2 < ∞ to guarantee
the quantum Zeno effect. The condition is also very close to being necessary in the sense that
if M1 = ∞, then as clearly seen from the subsequent example, limn→∞ |A(t/n)|2n may be
strictly less than 1 even if the limit exists. It seems that the necessary and sufficient condition
for the occurrence of the quantum Zeno effect isM1 < ∞. The following discussion supports
this claim.

Finally, let us see an illustrative example. Let ν be a positive constant. Consider the state
energy distribution

|λ(E)|2 = �
(
ν + 1

2

)
√
π�(ν)

(1 + E2)−ν−
1
2 E ∈ R. (7)
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In statistical terms, this distribution is Pearson’s seventh distribution, when α = 1
2 , it is the

celebrated Breit–Wigner distribution (Lorentzian distribution or Cauchy distribution). This
distribution has a finite absolute βth moment, that is, Mβ < ∞, if and only if β < 2ν. Its
characteristic function is (see [9], p 254)

A(t) :=
∫

e−itE |λ(E)|2 dE = 2

�(ν)

( |t|
2

)ν
Kν(|t|) t ∈ R.

Here Kν(z) is the modified Bessel function defined as

Kν(z) = π

2

I−ν(z)− Iν(z)

sin(νπ)
−π < arg z < π

and for any ν ∈ R,

Iν(z) =
( z

2

)ν ∞∑
n=0

1

�(n + ν + 1)n!

( z
2

)2n
z ∈ C.

We assume that ν is not an integer. When ν is an integer, the above formulae still
hold if interpreted in the limiting sense. After some simple manipulations and noting that
�(ν)�(−ν + 1) = π

sin(νπ) , we readily see that when t > 0 is near zero,

A(t) = 1 − π

�(ν)�(ν + 1) sin(νπ)

(
t

2

)2ν

+O(t2).

Consequently,

|A(t/n)|2n =
(

1 − π

�(v)�(ν + 1) sin(νπ)

(
t

2

)2ν

+O(t2)

)2n

≈ exp

{
− πt2ν

22ν−1�(v)�(ν + 1) sin(νπ)
n1−2ν +O(t2/n)

}
(when n is large)

from which we get

lim
n→∞ |A(t/n)|2n =




0 ν < 1/2
e−t ν = 1/2
1 ν > 1/2.

Consequently, there are three distinct scenarios:

(1) When ν = 1
2 , the decay is exactly exponential. In this case, we note that M1 = ∞.

(2) When ν > 1
2 , the decay slows down for small t, and the quantum Zeno effect manifests.

Note that in this case, Mβ < ∞ for β < 2ν. Since ν > 1
2 , we can always take a β

satisfying 1 < β and Mβ < ∞, thus in conformity with corollary 2.
(3) When ν < 1

2 , the decay is actually accelerated (compared with the exponential decay);
we cannot obtain the quantum Zeno effect, in contrast, the survival probability tends to
zero, and we get the quantum anti-Zeno effect [3].

Furthermore, when ν � 1
2 , the average of the distribution of |λ(E)|2 is infinite, and the

classical inequalities τ�H � π
2 and τ 〈H 〉 � π

2 give only the trivial estimate: τ � 0 (since
�H = ∞, 〈H 〉 = ∞). However, corollary 1 still gives a non-trivial estimate of τ if we take
any β < 2ν:

τ �
(
λβ
�
(
ν + 1

2

)
√
π�(ν)

B

(
β

2
+

1

2
, ν − β

2

))−1/β

.

Here B(p, q) = ∫ 1
0 x

p−1(1 − x)q−1 dx ≡ ∫∞
0 xp−1(1 + x)−p−q dx is the beta integral (p > 0,

q > 0). Actually τ = ∞ in this example.



Inequality for characteristic functions and its applications to uncertainty relations and quantum Zeno effect 5941

Acknowledgments

SL and ZW are supported by the Liu Bie Ju Center for Mathematical Sciences (project no
9360020), City University of Hong Kong. QZ is supported in part by City University of
Hong Kong, contracts 7001158 and 9040399, and by RGC contract 9040399.

References

[1] Chiu C B, Sudarshan E C G and Misra B 1977 Time evolution of unstable quantum states and a resolution of
Zeno’s paradox Phys. Rev. D 16 520–9

[2] Home D and Whitaker M A B 1986 Reflections on the quantum Zeno paradox J. Phys. A: Math. Gen. 19
1847–54

[3] Kofman A G and Kurizki G 2000 Acceleration of quantum decay processes by frequent observations Nature
405 546–50

[4] Luo S L 2001 A variation of the Heisenberg uncertainty relation involving an average J. Phys. A: Math. Gen.
34 3289–91

[5] Mandelstam L and Tamm I 1945 The uncertainty relation between energy and time in nonrelativistic quantum
mechanics J. Phys. (Moscow) 9 249–54

[6] Margolus N and Levitin L B 1998 The maximum speed of dynamical evolution Physica D 120 188–95
[7] Misra B and Sudarshan E C G 1977 The Zeno’s paradox in quantum theory J. Math. Phys. 18 756–63
[8] Pfeifer P 1993 How fast can a quantum state change with time Phys. Rev. Lett. 70 3365–8
[9] Temme N M 1996 Special Functions: An Introduction to the Classical Functions of Mathematical Physics

(New York: Wiley)
[10] Uffink J 1993 The rate of evolution of quantum state Am. J. Phys. 61 935–6
[11] Vaidman L 1992 Minimum time for the evolution to an orthogonal quantum state Am. J. Phys. 60 182–3


